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The space-fractional advection-dispersion 
equation (fADE ) 

Non-Fickian transport of conservative solutes has 
been widely observed in laboratory and field data [1, 2, 
8]. The resulting anomalous dispersion is not well 
described by the classical second-order advection-
dispersion equation (ADE) without extensive site 
characterization [11].  The space-fractional advection-
dispersion equation (fADE) provides an attractive 
alternative that can represent plume skewness and early 
arrivals: 
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where  is tracer concentration, v  is the plume 

velocity,  controls rate of spreading, 

),( txC
D   is a skewness 

parameter ( 11   with 0  for a symmetric 

plume) and the spatial fractional index 21    codes 
the heterogeneity of the porous medium [Clarke et al, 
2005].When 2 , (1) reduces the classical ADE with 
constant parameters. The fADE (1) has been successful at 
modeling unsaturated transport [10], transport in saturated 
porous media [12], and river flows [6, 7]. 
Parameter Estimation 
     This paper develops a general method of parameter 
estimation for the fADE parameters Dv,,, from 

plume concentration data.  Both spatial snapshots 
(observations of concentration  for t  fixed and 

) and temporal breakthrough curves 

(measurements of  for 

), t(xC

Nxxx ,,1 
),( txC x fixed and  

) are considered, since these are the data 

typically available.  Naturally these data are contaminated 
by measurement error as well as model error (no model 
takes into account every source of variation].   

Nttt ,,1 

For the fADE with point source initial condition, the 
underlying stochastic process is a stable Levy motion, a 
Markov process whose transition densities have no closed 
form in general, but can be efficiently computed by well 
established numerical methods [3, 4, 9]. Using a pseudo-
particle approach, and equating the relative concentration 
of particles with stable density, we can equate the 
measured concentration with a histogram consisting of 
the observed number of particles in each bin, where bin 
size is chosen to represent the volume sampled in a 
concentration measurement, and the number of pseudo-
particles is calibrated with plume roughness.  A stable 

density   has a set of 

parameter

),( txf
,( ),,   , where   is related to  

in such a way that  

D

)2cos(  Dt .   

Several illustrative applications were fit to 
demonstrate the method on data sets representing field 
data:  spatial snapshots from a tracer test at the MADE 
site in Mississippi; breakthrough curve data from tracer 
tests along the Grand River and the Red Cedar River in 
Michigan; and simulated ensemble snapshots from the 
Integrated Groundwater Modeling facility at Michigan 
State University. 
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